เอกสารเพิ่มเติมจากคู่มือ P1

คู่มือโปรแกรม MICROFEAP for Windows โมดูล P1 (เล่มน้ำเงิน ปกแข็ง) เขียนขึ้นในเดือน มี.ค. 2545 เพื่อรองรับการใช้งานของโมดูล P1:Release 1.0 โปรแกรมได้รับการพัฒนาและปรับปรุงอย่างต่อเนื่องเป็น Release สูงขึ้น จนในเดือน ส.ค. 2553 ได้ออก Release 3.0 ตัวล่าสุด ซึ่งเพิ่มประสิทธิภาพในการออกแบบคาน และเสาคอนกรีตเสริมเหล็ก ดังนั้น เอกสารนี้จึงสรุปเนื้อหาในส่วนที่ได้ปรับปรุงเพิ่มเติมจากคู่มือ

1. การ Run โปรแกรม (ยกเลิกบทที่ 2 ในคู่มือ และให้อ่านตรงนี้แทน)

โปรแกรมรุ่นปัจจุบันถูกกำหนดให้ Run ใน Handy Drive (HD) ของชมรม เมื่อผู้ใช้เสียบ HD เข้ากับ เครื่องคอมฯ ให้ไปที่โฟลเดอร์ MFW_P1 แล้วคลิ๊ก Run ไฟล์ **P1** MFW_P1r30.exe หน้าต่าง Logo ของโมดูล P1 จะปรากฏขึ้นบนจอ ผู้ใช้สามารถอ่านคำแนะนำการใช้งานในบทที่ 3, 4 และ 5 ตามลำดับ เมื่อจะออกจาก โปรแกรมให้คลิ๊กที่คำสั่ง <<u>E</u>xit> ในหน้าต่าง Activity Menu และก่อนจะดึง HD ออกจากเครื่อง ควรคลิ๊กปุ่ม icon **ช**ที่ Task bar ให้เครื่องรับรู้ว่าจะหยุดการใช้งานช่อง Drive ที่เสียบ HD ตัวนั้น

2. <u>ในส่วนการป้อนข้อมูล Project Data</u>

- 🖉 ชื่อ Master Filename สามารถตั้งได้ถึง 18 ตัวอักษร
- 🗷 Project Title และชื่อ Engineer พิมพ์เป็นภาษาไทยได้
- 🕿 การเลือกหน่วยของ Force และ Length จะมีผลต่อการคำนวณ
- 🗷 ในส่วนของ <<u>B</u>oundary data> มีปุ่มกดเลือกประเภทของ Supports แบบ Fixed, Hinge, Roller, ... ได้โดยสะดวก
- *≪* ในส่วนของ <<u>M</u>aterial data>
 - มีปุ่มกดค่า Young's Modulus ของเหล็ก (Es) และคอนกรีต (Ec) ให้ เลือกใช้งาน ค่าจะปรากฏขึ้นโดยอัตโนมัติตามหน่วยที่ผู้ใช้กำหนด
 - การป้อนค่า Section Properties ทำได้ 4 รูปแบบ ดังนี้
 - 1) <u>G</u>eneral → ผู้ใช้ป้อนค่า A, I, ... เอง
 - <u>R</u>ectangular → กรณีหน้าตัดสี่เหลี่ยมผืนผ้า ป้อนความกว้างและ ความลึก (B, D) โปรแกรมจะคำนวณค่า A, I ให้เองโดยอัตโนมัติ
 - 3) **C**ircular → ป้อนค่า diameter (D) ในกรณีหน้าตัดวงกลม
 - 4) <u>S</u>teel Table → เลือกใช้หน้าตัดจากตารางเหล็กที่มีอยู่ในโปรแกรมกว่า
 400 หน้าตัด (ตัว C, 2C, H, I, WF, เหล็กฉาก L, 2L, Pipe, Box, Light
 Lip_C) ค่า A, I, ... จะตามมาโดยอัตโนมัติ หากต้องจะเพิ่มหรือลบข้อมูล
 ของหน้าตัด ให้ใช้ปุ่มคำสั่ง <<u>A</u>dd> หรือ <<u>D</u>elete>

Steel Table	(407 Sectio	ons) ———					
Sections	Wt he (n	Area	Ix	Iy	Sx	Sy	Rmin
	kg∕m	Cm Z	CM 4	Cm 4	Cm 3	Cm 3	CM
C75x40x5x7	6.9	8.82	75.3	12.2	20.1	4.5	1.18 🔺
C100x50x5x7.5	9.4	11.92	188	26.0	37.6	7.5	1.48 🚍
C125x65x6x8	13.4	17.11	424	61.8	67.8	13.4	1.90
C150x75x6.5x10	18.6	23.71	861	117	115	22.4	2.22
C150x75x9x12.5	24.0	30.59	1050	147	140	28.3	2.19

- 📧 ในส่วนของ <<u>L</u>oad data> เข้าไปที่เมนูย่อยของ <<u>V</u>olume load>
 - มีปุ่มกดเลือกค่าน้ำหนักวัสดุ (Self_weight) ของเหล็ก (7,850 kg/m³) และคอนกรีต (2,400 kg/m³) โดยอัตโนมัติตามหน่วย ที่เลือกไว้ในตอนตัน
- แส่วนของ <Utility> มีคำสั่งแปลงหน่วย <Convert Units> ของแรงและ ระยะทางในรูปแบบต่างๆ ให้เลือกใช้งานโดยอัตโนมัติ เช่น ในตอนแรกใช้ หน่วย kg, m ต่อมาอยากเปลี่ยนเป็น ton, m (หรือหน่วยอื่น) ผู้ใช้สามารถ เลือกใช้ Utility นี้แปลงหน่วยได้อย่างสะดวก จากนั้นจะต้อง Solution ใหม่ ทุกครั้งที่มีการแปลงหน่วย

Volume l	Load Data —		-Self-Weight-
Vx =		(kg/m^3)	Concrete
Vy =	-2400	(kg/m^3)	O Steel

📧 เพิ่มช่องทางเลือกในการรับ <<u>G</u>et> และส่ง <<u>S</u>end> ข้อมูลในรูปของ Text File

โมดูล Release 3.0 ได้เพิ่มทางเลือกใน Node การรับข้อมูลของ Coordinate, Element Connectivity และ Nodal forces ทาง Text files ซึ่งสร้างจากโปรแกรมอื่น เช่น Notepad, Excel, Word, ... แล้ว save ภายใต้นามสกุล *.txt หรือ *.prn ผู้ใช้คลิ๊กปุ่มคำสั่ง <Get data...> เลือ ไฟล์ข้อมูล และคลิ๊กปุ่มคำสั่ง <<u>G</u>et> เพื่อดึ ข้อมูลเข้าสู่โปรเจ็คที่ทำงาน ในทางกลับกันถ้ ต้องการจะส่งข้อมูลออก ก็สามารถใช้คำส่ <Send data...> พิมพ์ชื่อ Text file และเลือ File type ที่จะ save แล้วคลิ้กปุ่มคำสั่ง <<u>S</u>end>

์ตัวอย่างรูปแบบการพิมพ์ข้อมูลใน Text files

• Coordinate data

พิมพ์ค่า x-coor.	เว้นช่องว่าง	พิมพ์ค่า y-coor. ของ Node 1	
พิมพ์ค่า x-coor.	เว้นช่องว่าง	พิมพ์ค่า y-coor. ของ Node 2	
		n	

Element connectivity data

พิมพ์ค่า Start_node เว้นช่อง พิมพ์ค่า End_node ของ Elem.1 พิมพ์ค่า Start_node เว้นช่อง พิมพ์ค่า End_node ของ Elem.2

 	 n

	X-Coor. (m)	Y-Coor. (m)	Node_Gen.		
	0	0	0	Coord	A start film
				Send	
	,	, Clea <u>r</u>	<u></u> к	<u>C</u> et data fro	m text file
ก	<< Get coo	rdinate data	a from text fi	le >>	×
้ง	Current P	roject : 7-ST		- File Type-	<u>D</u> elete
in	Name of T	ext File: 7-ST	Г	O *.pm	⊻iew
ะ เง	(Get for	mat> X-coo	r. Y-coor.)		<u>G</u> et
ก	Drive:	Folder:		Text File:	
	😅 d:	🔟 🛄 d: \	P1 data	FX1 TXT	
		📄 Artit	1.data	EX2.txt	
		🔲 🛄 Wat			

-		
🜌 7-	-st.txt	- Notepad
<u>F</u> ile	<u>E</u> dit	<u>S</u> earch <u>H</u> elp
0	0	← ค่า (x, y) node 1
0	3.2	← ค่า (x, y) node 2
0	6.4	
0	9.6	
0	12.8	← ค่า (x, y) node 5
0	16	

ตัวอย่าง Text file เก็บข้อมูล Coordinate พิมพ์ใน Notepad

<i>🛃</i> 7·	ST.p	rn - Notep	ad
<u>F</u> ile	<u>E</u> dit	<u>S</u> earch	<u>H</u> elp
1	2	← Conne	ectivities ของ Elem1
2	3	\leftarrow Conne	ectivities ของ Elem2
З	4		
4	5		
5	6	← Conne	ectivities ของ Elem5
6	7		

ตัวอย่าง Text file เก็บข้อมูล Element Connectivity พิมพ์ใน Notepad

หน้า... 2

Load Case

3. <u>ในโหมดแสดงผลทาง Graphics</u>

- ช้อมูลของ Loads ที่กระทำ เช่น Joint loads, Point loads บนชิ้นส่วน, Uniform loads, Volume loads หรือ Temperature loads สามารถ แสดงผลทางรูปกราฟฟิกได้ ช่วยให้ง่ายต่อการตรวจสอบข้อมูล
- 📧 สามารถดูค่าของ Support Reactions ที่เกิดขึ้นในโหมดกราฟ^{ี่}ฟิกได้
- 📧 ชิ้นส่วนที่รับแรงภายในสูงสุด / ด่ำสุด มีการแยกส์ให้เห็นชัดเจน

ตัวอย่างการแสดงผลทางกราฟฟิก

4. <u>ในโหมดแสดงผลลัพธ์ Results</u>

- หน้าจอแสดงผลลัพธ์แบบตัวเลขของ Displacements, Stresses, Reactions มีการออกแบบให้เชื่อมโยงถึง กันเพื่อสะดวกต่อการเรียกใช้งาน และยังสามารถเชื่อมโยงไปยังผลลัพธ์แบบกราฟฟิกได้อีกด้วย บน หน้าจอของผลลัพธ์จะแสดงชื่อ Project พร้อมข้อมูลจำนวน Nodes, Elements, Material sets และ Load cases เพื่อบอกให้ผู้ใช้ทราบว่ากำลังทำงานที่โครงการใด
- 🗷 เมื่อคลิ๊กที่ช่อง Load case โปรแกรมจะแสดง Load title เพื่อเตือนความจำ หรือเมื่อคลิ๊กช่อง Material set โปรแกรมก็จะแสดงข้อมูลของหน้าตัดเช่นกัน
- แแต่ละชุดของผลลัพธ์ที่แส[้]ดงผล จะมีตารางสรุปค่าผลลัพธ์สูงสุดและต่ำสุด (Max./ Min.) ที่เกิดขึ้นเพื่อ รายงานให้ผู้ใช้ทราบเพื่อง่ายต่อการนำไปใช้ในการออกแบบ เช่น ค่า Max./ Min. deflection เกิดขึ้นที่ Nodes ใด หรือ ค่า Max./ Min. Moment เกิดขึ้นที่ Elements ใด เป็นตัน

raphics Mer

Geometry

MICROF	EAP-P	'1 for ₩in	dows develo	ped by Dr. Sompo	rn Attasaeranewo	ng		- 8 >
uthority :	ดร. สม	พร อรรถแ	สรณิวงศ์ p13.	0			Filename : ExFrame	
ss Load	Case s	stresses ?					Duriant Diana France	
Load (`aca '	1 (Fact	on = 1	TT + WT			Project : Plane Frame	
Elem	Set.	Hinge	Section	Avial-F	Shear	Moment	(Node = 12, Elem = 15, MatSet = 2, Load =	= 1)
	000	mimgo	(m)	(kg)	(kg)	(kg-m)		
1	1		0.00	-32771.32	372.21	-2314.47	Load Case Material S	et
_	-		4.00	-32771.32	372.21	-825.62		
2	1		0.00	-27505.04	566.83	-2156.62		
			4.00	-27505.04	566.83	110.69	ALL	
3	1		0.00	-19933.53	370.36	539.76	1 (0.4x0.4 m)	
			4.00	-19933.53	370.36	2021.19	Element LIS 2 (0.25x0.6 m)	
4	1		0.00	-14084.79	-1001.75	2643.77	ALL	_
			4.00	-14084.79	-1001.75	-1363.24		
5	1		0.00	-7251.00	-1750.66	3044.43		
			4.00	-7251.00	-1750.66	-3958.20	Print data Close	
6	1		0.00	-42228.68	2627.79	-5313.44		
_			4.00	-42228.68	2627.79	5197.72	I Souro Eilo Displacements	i
7	1		0.00	-32494.96	1833.17	-6873.61		1
	-		4.00	-32494.96	1833.17	459.09	Crophica Departions	
8	T		0.00	-25066.47	1429.64	459.09	<u>G</u> raphics <u>R</u> eactions	
	1		4.00	-25066.47	1427.04	4252 50	*	
2	1		4 00	-15915.21	2201.75	4352.50		
10	1		4.00	-7749 00	2350 66	-3950 42	ที่ทุ่ง ruk ถุงบห	
10	-		4 00	-7749 00	2350.66	5452 21	Summary of Selected Results	
11	2		0.00	-794 61	5266 28	1330 99	Summary of Selected Lesuits	
	-		1.00	-794.61	2766.28	5347.27	May (c) Flags May ()	F laws
			2.00	-794.61	266.28	6863.55	Max (+) Elem Max (-)	Elem
			3.00	-794.61	-2233.72	5879.83	Avial (kg) 772 11 13 -42228 6	8 6
			4.00	-794.61	-4733.72	2396.11		ŬŬ
			5.00	-794.61	-7233.72	-3587.61	Shear (kg) 7571.51 12 -9733.7	2 11
10	2	F	6.00	-794.61	-9733.72	-12071.32	M (ke w) 11025 46 40 40074 5	22 11
12	2	본	0.00	-403.53 402 E2	/5/1.51	-429.07	M (Kg-m) 11035.40 12 -12071.3	2 11
			2 00	-403.53	3071.51 2671 61	0712.44		
			2.00 3.00	-403.53 -/03 E2	2071.01 71 51	2/13.25		
			3.00	-403.33	/1.51	IIUJJ.40		

ตัวอย่างหน้าจอแสดงผลของโหมด Stress Results ของโครงสร้าง Frame

แกรณีของโครงสร้าง Steel Truss ในส่วนของ <<u>S</u>tresses> ได้
 เพิ่มคำสั่งสำหรับตรวจสอบค่า Stress ที่เกิดขึ้นในชิ้นส่วนกับค่า
 Allowable Stress แล้วรายงานเป็นค่าความปลอดภัย (Safety
 Factor) ให้ผู้ออกแบบทราบ พร้อมตัวเลขประสิทธิภาพความ
 ประหยัด (Design Efficiency) ในการออกแบบโครงการนั้นๆ

นอกจากนี้ โปรแกรมยังยอมให้ ผู้ใช้กำหนดค่า Fy และ Es ของ วัสดุได้เอง

Modulus Es>	2040000	▼kg/cm^2
Yield Stress Fy>	5000	▼kg/cm^2
	2400	
	5000	

Design of <u>T</u> ension / Compression Steel Members with kL/r Effects Design Summary of Selected Elements									
Tension Compression									
Critical Elem.	3	8							
Stress (kg/cm^2)	861.2	-873.1							
Allow (kg/cm^2)	1512.0	-893.9							
Safety Factor	1.76	1.02							
Status	<u> </u>	OK							
Efficiency o	fDesign =	84.2 %							
· · · ·									

🧟 ผู้ใช้สามารถเรียกดูปริมาณวัสดุ (Volume of materials) ที่ใช้ในแต่ละ Set ได้ เช่นในรูปแสดงปริมาณเหล็ก รูปพรรณของโครงหลังคาที่ออกแบบไว้โดยใช้เหล็ก 5 ขนาด มีน้ำหนักรวม 4,342 kg ตัวเลขนี้จะเป็น ประโยชน์ต่องานประมาณราคา

< Volume of	Materials ≻≻			Filename : T1_1
Set	Volume (cm^3)	Weight (kg)	Section	Project : YOKO-3 FAC. Main Truss T1-1 (30
1 2 3 4 5	388803.60 70452.79 32719.06 34229.83 27039.80	3052.11 553.05 256.84 268.70 212.26	H200x200x8x12x49.9kg/m H150x150x7x10x31.5kg/m OD139.8x4.5x15.0kg/m OD114.3x4.5x12.2kg/m OD101.6x4x9.6kg/m	-Unit Weight Options © Steel = 0.00785 kg/cm^3 © Concrete = 0.0024 kg/cm^3
Total Unit W Total	Volume = eight = Weight =	553,249 0.(4,342	5.085 cm^3 D0785 kg∕cm^3 2.974 kq	

5. <u>เพิ่มเมนูออกแบบ Rc Design</u>

โปรแกรมโมดูล P1:Release 3.0 ได้พัฒนาเพิ่มขีดความสามารถในการออกแบบ คานและเสาคอนกรีตเสริมเหล็กด้วยวิธีหน่วยแรงใช้งาน (Working stress design) อ้างอิงมาตรฐานการออกแบบของ วสท. ผู้ใช้สามารถคลิ๊กเมนูคำสั่ง <<u>R</u>c_Design> จาก หน้าต่างของ Activity Menu เมนูย่อยของ Beam และ Column design จะปรากฏ ซึ่งมี 4 แบบให้เลือกใช้งาน (คลิ๊ก <<u>A</u>bout the design> เพื่อดูรายละเอียด)

5.1 <u>Rc Design เมนูคำสั่ง <Beam P1></u>

เมื่อคลิ๊กเลือกเมนูคำสั่งนี้ โปรแกรมจะไปดึงข้อมูลและผลลัพธ์ Stresses ของทุกชิ้นส่วนใน Current Project มาแปลงหน่วยให้อยู่ในหน่วยการใช้งานที่ส่วนออกแบบคานต้องการ เช่น ค่าความกว้างและความลึกจะ แปลงให้อยู่ในระบบ cm, ค่า Moment เป็น kg-m, ค่า Shear และ Axial-Force เป็น kg เป็นต้น โปรแกรมจะ คำนวณหาปริมาณเหล็กเสริมต่างๆ ของหน้าตัดคานและแสดงผลในรูปของตารางตัวเลขดังรูป

<u>ข้อควรระวัง</u> เนื่องจากข้อมูลของชิ้นส่วนทุกชิ้นจะถูกดึงเข้าม[้]าคำนวณโดยอัตโนมัติโดยที่โปรแกรมจะไม่ แยกแยะว่าชิ้นส่วนใดเป็น beams หรือ columns ดังนั้น ผู้ใช้จะต้องไปคลิ๊กเลือกเบอร์ Material Set ของชิ้นส่วน ที่เป็น beams เอง เพื่อให้ข้อมูลสอดคล้องกับโปรแกรมออกแบบคาน คสล. ที่ใช้

สรุปขั้นตอนการใช้งาน Rc Design ที่หน้าจอของ Beam P1

้ (1) เลือก Material Set ของคานที่ต้องการจะออกแบบ

____**(3)**

- (2) เลือก Load Case ที่ต้องการ (ไม่ระบุ หมายถึง Combined load cases)
- (3) กำหนดค่า Design parameters: Fc', Concrete factor, Fs, Concrete covering (d'), ...
- (4) คลิ๊กเม้าส์ที่บรรทัดข้อมูลเพื่อดู drawing การเสริมเหล็กทางกราฟฟิก
- (5) เลือกขนาด diameter ของเหล็ก Ast, Asc และเหล็กปลอกที่ต้องการ
- (6) เลือกคำสั่งพิมพ์ผลลัพธ์ตามใจชอบ (คลิ๊ก <<u>E</u>nlarge> เพื่อดูภาพขยาย)

	RC	Desig	n for B	ea/m P [·]	1 (All Secti	ons) —		Authority	/:ดร.สม	พร่อรรณศระ	มีวงศ์ p13.0) Da	ate: 09-08-5	5 <mark>3</mark>
	<u>1.</u>	Concre	ete : Fc	' / ksc, (ylinder 28 d	lays)			3. De	sion Param	eter Infor	mation		
	0	0 173	€ 208	/C 240	C 280 C	300 🔿 Gi	ven	Stirrup	<u> </u>	2040000 L	<u> </u>	1500 km	. Ev 12	00 kaa
		-	C 0.07	* 			Case	• RB6	ES =	2040000 Ka	C FS =	1000 KSU	; FV = 121	00 KSC
		Factor	0.375	0.4	o Given		Clase Tion Ast	C RB9	EC=	219362 Ks	C FC =	208 KS0	C FC =	78 KSC
	<u>2.</u>	Main S	Steel : F	s (ksc)			D <u>T</u> op Ast	C RB12	n =	9 K =	0.319)	= 0.894	H = 11.	
	~		C 1500	C 170			 Bottom Asi 		Lo	ad Case	Eleme	nt List	Mater	ial Set
	, v	1200	• 1500				ď =	4 cm	Com	pination	ALL	-	2 (25x60) cm) 🕨 💌
	-	<< Bea	m Desi	gn for C	ombined Lo	ad Cases >	>>						ALL	
		Load	Facto	r: 1					— (2	? _			1 (40x40	cm)
]]]	Elem	В	D	Length	Axial	Shear	Moment	Ast	t Asc	RB6@	RB9@	R 2 125x60	cm
			(cm)	(cm)	(m)	(kg)	(kg)	(kg-m)	(cm^2)) (cm^2)	(cm)	(cm)	(cm)	
		11	25	60	6.00	-795	-9734	-12071	15.9	1 5.93	10.3	23.7	28.0	<u> </u>
		12	25	60 60	1 00	-404 -404	5072	-429	0.5	7 0.00 5 0.00	25.5 28 0	28.0 28.0	28.0 28.0	
		12	25	60	2.00	-404	2572	9714	12.8	9 1.77	28.0	28.0	28.0	
		12	25	60	3.00	-404	72	11035	14.5	8 4.10	28.0	28.0	28.0	
	-11	12	25	6U 60	4.00	-404 -404	-2428	9857 6178	13.0	72.02 3000	28.0	28.0	28.U 28.0	
(4) 🕂	$\frac{12}{12}$	25	60	6.00	-404	-7428	01/0	0.0	0.00 0 0.00	28.0	28.0	28.0	
<u>ц</u>		13	25	60	0.00	772	5849	-623	0.8	3 0.00	28.0	28.0	28.0	
		13	25	60	1.00	772	3349	3976	5.3	D 0.00	28.0	28.0	28.0	
		13	25	60 60	2.00	772	-1651	5674	8.01	9 0.00 6 0.00	28.0 28.0-	- (6)	28.0 28.0	
		13	25	60	4.00	772	-4151	2772	3.6	9 0.00	28.0		28.0	
Щ		13	25	60	5.00	772	-6651	-2629	3.5	0.00	28/0	28.0	28.0	•
1	5)				🗖 Che	ck Minimur	n Ast.		P	rint data	Print dray	wing 2		loce
4		Ten	sile St	eel (As	:t]							<u> </u>		21030
			×	O 12mr	m 🔿 16mm -	🖲 20mm 🤆) 25mm 🔿	28mm 🔘 No	ine 👘	3-DB16 = 6	.03		25	
		No	of bars	13	8	5	3	3 🗖 Enl	arge 👘	•••				
		Ast	(cm^2)	14.69	16.08	15.7	14.73 1	8.48 🐪 dra	wing		Chinana	1	1035 ^{ASC}	
		Cor	npress	ive Ste	el (Asc)-						BB6@281	n 📔		60
				O 12mr	n 💽 16mm -	🔿 20mm 🤆	0 25mm 🔿	28mm 🔿 No	ne			·	Ast	
		No. (of bars	4	3	2	2	2					4	<u> </u>
		Asc	(cm^2)	4.52	6.03	6.28	9.82 1	2.32		5-DB20 = 15	5.70		Bottom	451

หน้าจอออกแบบคาน คสล. ของเมนูคำสั่ง <Beam P1>

5.2 <u>Rc Design เมนูคำสั่ง <Beam general></u>

เมนูคำสั่งนี้จัดเตรียมไว้สำหรับผู้ใช้ที่ต้องการออกแบบหน้าตัดคานทั่วไปโดยป้อนค่า Moment, Shear และ Torsion เอง เมนูนี้สามารถทำงานอย่างอิสระโดยไม่ยึดโยงกับข้อมูลส่วนอื่นของโปรแกรมโมดูล P1 โปรแกรมถูกออกแบบให้มีความยืดหยุ่น เช่น ยอมให้ผู้ใช้กำหนดค่า Fc', Fs เอง หรือเลือก spacing ของเหล็ก ปลอกได้เอง เป็นต้น เหมาะแก่การนำไปใช้งานของนักศึกษาและผู้สนใจทั่วไปที่ต้องการจะตรวจสอบหรือ ออกแบบหน้าตัดคานใด ๆ อย่างไรก็ตาม ผู้ใช้ควรระมัดระวังในเรื่องของการป้อนค่าตัวเลขให้เป็นไปตามระบบ หน่วยที่โปรแกรมต้องการ

หน้าจอออกแบบคาน คสล. ของเมนูคำสั่ง <Beam general>

5.3 <u>Rc Design เมนูคำสั่ง <Column P1></u>

เมื่อคลิ๊กเลือกเมนูคำสั่งนี้ โปรแกรมจะไปดึงข้อมูลและผลลัพธ์ Stresses ของทุกชิ้นส่วนใน Current Project มาแปลงหน่วยให้อยู่ในหน่วยใช้งานของส่วนออกแบบเสา เช่น ค่าความกว้างและความลึกจะแปลงให้ เป็น cm, ค่า Moment เป็น ton-m, ค่า Shear และ Axial-Force เป็น ton เป็นตัน โปรแกรมจะคำนวณหา ปริมาณเหล็กเสริมของเสาสี่เหลี่ยมและเสากลมโดยอัตโนมัติ และรายงานผลในรูปของตารางตัวเลขดังรูป

<u>ข้อควรระวัง</u> เนื่องจากข้อมูลของชิ้นส่วนทุกชิ้นจะถูกดึงเข้ามาคำนวณโดยอัตโนมัติโดยที่โปรแกรมจะไม่ แยกแยะว่าชิ้นส่วนใดเป็น beams หรือ columns ดังนั้น ผู้ใช้จะต้องไปคลิ๊กเลือกเบอร์ Material Set ของชิ้นส่วน ที่เป็น columns เอง เพื่อให้ข้อมูลสอดคล้องกับโปรแกรมออกแบบเสา คสล. ที่ใช้

สรุปขั้นตอนการใช้งาน Rc Design ที่หน้าจอของ Column P1

- (1) เลือก Material Set ของเสาที่ต้องการจะออกแบบ
- (2) เลือก Load Case ที่ต้องการ (ไม่ระบุ หมายถึง Combined load cases)
- (3) กำหนดค่า Design parameters: Fc', Fy, Concrete covering (d'), ...
- (4) ระบุค่า Minimum steel (ปกติใช้ 1%Ag) และค่าพึงพอใจ Economic level (ปกติใช้ Normal) <u>Note</u>: ดูคำอธิบายการใช้งานเพิ่มเดิมในหัวข้อ 5.3b และ c
- (5) คลิ้กเม้าส์ที่บรรทัดข้อมูลเพื่อดู drawing การเสริมเหล็กและกราฟ P-M Interaction diagram
- (6) เลือกขนาด diameter ของเหล็กยืนและเหล็กปลอก (*คลิ้ก <Help...>ดู ต.ย. การจัดเหล็กปลอก*)
- (7) เลือกคำสั่งพิมพ์ผลลัพธ์ตามใจชอบ (คลิ๊ก <<u>E</u>nlarge> เพื่อดูภาพขยาย)

หน้าจอออกแบบเสา คสล. ของเมนูคำสั่ง <Column P1>

5.3b <u>ปริมาณเหล็กยืนในเสา</u>

วสท 4800 (ฉ)

- ปริมาณเหล็กยืนในเสาต้องไม่ต่ำกว่า 1% และ
 ไม่เกิน 8% ของพื้นที่หน้าตัดเสาจริง (Ag)
- Diameter ของเหล็กยืนต้องไม่เล็กกว่า 12 มม.
- เหล็กยืนในเสาสี่เหลี่ยมต้องไม่น้อยกว่า 4 เส้น
- เหล็กยืนในเสากลมต้องไม่น้อยกว่า 6 เส้น

5.3b <u>ปริมาณเหล็กยืนในเสา</u> (ต่อ)

วสท 4800 (จ)

 ในกรณีเสาที่มีพื้นที่หน้าตัดมากกว่าที่ต้องการใน การรับน้ำหนัก ปริมาณเหล็กเสริมที่น้อยที่สุด ให้ คำนวณจากพื้นที่หน้าตัดเสาจริงที่ลดลงได้ (Ae) แต่ค่า Ae ที่ลดลงนั้นต้องไม่ต่ำกว่าครึ่งหนึ่งของ หน้าตัดเสาจริง (Ag)

Minimum Steel 0.5% Ag, or max. 1% Ae-1% Ag (normal case) การเลือก Minimum Steel ที่ 1%Ag มักใช้ในงานออกแบบเสาทั่วไปที่ผู้ออกแบบไม่สนใจเรื่องความ สิ้นเปลืองของปริมาณเหล็กเสริมต่ำสุดซึ่งจะเพิ่มขึ้นตามหน้าตัดเสาที่มีขนาดใหญ่ขึ้น ดังนั้น ในกรณีของเสาที่รับ น้ำหนักน้อยแต่ผู้ออกแบบเลือกใช้หน้าตัดใหญ่ การใช้ Option ที่ 1%Ag จึงเป็นการสิ้นเปลืองเหล็กเสริมโดยไม่ จำเป็น แต่หากเลือกใช้ Minimum Steel ที่ 0.5%Ag หรือค่ามากของ 1%Ae จะได้ปริมาณเหล็กเสริมด่ำสุดที่ เหมาะกับการใช้งานจริงมากกว่า โปรแกรมจะคำนวณหาหน้าตัดประสิทธิผล (Ae) ให้ ซึ่งไม่ว่าขนาดหน้าตัดจริง (Ag) จะใหญ่เท่าใดก็ตาม ภายใต้การรับน้ำหนักน้อยๆ ค่าเดียวกัน ย่อมจะได้ค่า Ae เท่ากัน ดังนั้น ปริมาณ เหล็กเสริมที่ 1%Ae จึงมีค่าเท่ากันในทุกกรณี (ดูตัวอย่างของหน้าตัดเสาทั้ง 3 ขนาดในรูป) แต่จากข้อกำหนด ของ วสท 4800 (จ) ให้เปรียบเทียบ 1%Ae กับค่า 0.5%Ag แล้วนำค่ามากกว่าไปใช้งาน

5.3c <u>ตั้งค่าระดับความพึงพอใจ Economic Level</u>

การหาปริมาณเหล็กเสริมในเสาจะใช้วิธีการสุ่มความ ละเอียดจากสมการของเส้นกราฟ P-M Interaction diagram ถ้าตั้งค่าความละเอียดไว้สูงจะได้เหล็กเสริมน้อย นั่นหมายถึง ความประหยัด แต่ถ้าตั้งไว้ต่ำจะได้เหล็กเสริมมากซึ่งอาจทำ ให้เกิดการสิ้นเปลือง ดังนั้น ในการกำหนดระดับความพึง พอใจ Economic level ที่เหมาะสมนั้น ผู้ออกแบบจะต้อง คำนึงถึงสภาพและข้อจำกัดของงานที่ทำเป็นสำคัญเพื่อเป็น

Economic Level	Normal 🗾 💌	Combination
.oad Cases >> –	Veryhigh	e %Ast = 1.21%
Shear Momer	High Normal	%Åst Num
(t) (t-1	Medium	(%) DB12

ข้อมูลช่วยตัดสินใจ โปรแกรมได้จัดเตรียมไว้ 4 ระดับให้เลือกใช้งาน ได้แก่ ระดับ Medium, Normal, High, Very high ตามลำดับ สำหรับในงานทั่วไปแนะนำใช้ที่ระดับ Normal ถือว่าเป็นค่ากลางๆ ที่รับได้ สำหรับระดับ Medium จะได้ปริมาณเหล็กเสริมมากขึ้น (ดูค่าในช่อง Average %Ast) เหมาะกับงานที่ผู้ออกแบบมีข้อมูลและ เวลาทำน้อยจึงต้องป้องกันตัวเองด้วยการเผื่อ Safety ไว้สูง หรืออาจใช้ในกรณีของงานออกแบบเบื้องต้นเพื่อ การประมาณราคา เป็นต้น ส่วนระดับ High และ Very high นั้น จะได้เหล็กเสริมน้อยลงตามลำดับ ให้ความ ประหยัดมากขึ้นภายใต้เกณฑ์ความปลอดภัยมาตรฐาน แต่ทั้งนี้ผู้ออกแบบจะต้องมีความมั่นใจในคุณภาพของ ข้อมูลที่ใช้ออกแบบ (เช่น ข้อมูล Loads และการใช้สอยโครงสร้าง เป็นต้น) และคุณภาพของทีมงานก่อสร้าง

5.4 <u>Rc Design เมนูคำสั่ง <Column general></u>

เมนูคำสั่งนี้จัดเตรียมไว้สำหรับผู้ใช้ที่ต้องการออกแบบเสาทั่วไปหน้าตัดสี่เหลี่ยมหรือวงกลมโดยป้อนค่า Axial Force และ Moment เอง เมนูนี้สามารถทำงานอย่างอิสระโดยไม่ยึดโยงกับข้อมูลส่วนอื่นของโปรแกรม โมดูล P1 เหมาะแก่การนำไปใช้งานของนักศึกษาและผู้สนใจทั่วไปที่ต้องการจะตรวจสอบหรือออกแบบหน้าตัด เสาใดๆ โปรแกรมถูกออกแบบให้มีความยึดหยุ่นสูง สามารถนำไปใช้ในกรณีเสายาว (Long column) ได้ ยอมให้ ผู้ใช้กำหนดค่า Fc', Fy เอง มีปุ่มกดเลือกรูปแบบหน้าตัดเสา สามารถเลือก spacing ของเหล็กปลอก เลือก ขนาดและจำนวนเส้นของเหล็กยืน รวมถึงกำหนดค่า Minimum steel ได้เอง เป็นต้น โปรแกรมจะแสดงกราฟ P-M Interaction diagram และจุดปลอดภัยของ Load พร้อม Drawing ของเหล็กเสริมให้เห็น ผู้ใช้สามารถคลิ๊ก ปุ่ม <<u>E</u>nlarge drawing> เพื่อดูภาพขยายได้ นอกจากนี้โปรแกรมยังรายงานผลชี้วัดประเมินการออกแบบ เกรด A, B, C, D, F ให้ผู้ใช้ทราบ ในการออกแบบเพื่อใช้งานจริง ควรเป็นเกรด B ถึง C, แต่สำหรับนักศึกษาที่ทำ แบบฝึกหัดควรเป็นเกรด A แต่ถ้าต้องการ Safety มาก (ไม่กลัวเปลือง) ก็ควรเป็นเกรด D เป็นต้น อย่างไรก็ ตาม ผู้ใช้ควรระมัดระวังในเรื่องของการป้อนค่าตัวเลขให้เป็นไปตามระบบหน่วยที่โปรแกรมต้องการ

หน้าจอออกแบบเสา คสล. ของเมนูคำสั่ง <Column General>